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Weakly nonlinear reactive shocks with lateral divergence 

J David Logan 
Department of Mathematics, University of Nebraska, Lincoln, NE 68588-0323, USA 

Received 9 June 1992 

Abstract. Asymptotic equations are obtained in a weakly nonlinear limit of the Wood- 
Kirkwood equations for slightly divergent reactive Row. Specifically. in cylindrical symmetry 
the equations of reactive Bow are restricted io the ceniral stream tube, and the radial 
component of the velocity is assumed to be a function of wavespeed of a signal propagating 
through ihe medium. Asymptotic equations are obtained in the limit where the Mach 
number is close to unity and the components of the velocity are small in comparison; the 
heal release is assumed to be small, and two cases with different chemical kinetics are 
examined. In one case an Arrhenius-type reaction rate with large activation energy is 
considered, and in another care a depletion-type rate with no Arrhenius factor is considered. 
The asymptotic equations are compared to the Ficken analogue of detonation. Finally, the 
existence of ZND type waves within the context of the model asymptotic equations is 
examined in special cases. 

1. Introduction 

We consider waves propagating in a chemically reacting medium and derive a simplified 
asymptotic model when the Bow is unidirectional with a slightly divergent component 
along the axis of propagation. The model equations are compared to the adhoc 
detonation analogue equations proposed by Fickett (1985) for slightly divergent flows. 

Geometrically, the medium is an infinitely long cylinder of finite radius. The flow 
is assumed to be cylindrically symmetric (no angular component) and dependent only 
upon the radial component r and the component x in the axial direction. The Bow is 
then restricted to the axis (or central stream tube) by taking the limit of the reacting 
Euid equations as r+O. The resulting equations, for what is termed slightly divergent 
reactive flow, were obtained in a classic paper by Wood and Kirkwood (1954). The 
boundary effects from the walls of the cylinder enter into the equations indirectly 
through a divergence term in the continuity equation. The Wood-Kirkwood equations 
are discussed in Fickett and Davis (1979). 

Using the slightly divergent Bow equations as a base, we perform a weakly nonlinear 
analysis and examine the equations in a special asymptotic limit. In this limit waves 
propagate at a speed close to the sound speed in the material ahead and the particle 
velocity is small in comparison. Heat i s  released by the chemical reaction at the same 
order as the mean kinetic energy of the Bow. In spite of these restrictive assumptions, 
which will be stated precisely in the subsequent analysis, the resulting asymptotic 
equations still admit a substantial nonlinear interaction between the chemical and Buid 
mechanical aspects of the flow. 

The weakly nonlinear analysis is similar to that performed on the general, one- 
dimensional equations of reacting Bow by Rosales and Majda (1983) (see also Fife 
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412 J D Logan 

(1982) and Majda (1986)); here we include lateral divergence. As in these cases the 
weakly nonlinear model is a Burgers-like equation which couples the hydrodynamics 
and the chemistry, and a reaction rate equation that governs the reaction. When radial 
divergence is included the Burgers equation contains a term that accounts for this 
divergence phenomenon, and the term enters at leading order. 

The general interest in slightly divergent Bows arose from study of the diameter 
effect in high explosives. The diameter effect is the observation that the detonation 
velocity depends in a critical way upon the diameter of a charge, and below a certain 
'failure diameter' self-sustaining detonation waves will not propagate. See Fickett and 
Davis (1979) for a complete discusssion and bibliography up to 1979. More recently, 
a perturbation solution about a planar shock front which couples directly to the 
boundary conditions has been obtained by Bdzil(1981) and Bdzil and Stewart (1986) 
in the case where the chemistry rapidly goes to completion. An article by Klein (1991) 
discusses the dynamics of weakly curved detonations and contains references of other 
recent work on multidimensional effects in combustion and detonation. A review article 
by Ledder and Logan (1992) discusses weakly nonlinear equations and analogues of 
detonation processes in a one-dimensional setting. Similarity solutions of the Wood- 
Kirkwood equations are discussed in Logan (1988). 

The goveming equations (continuity, momentum balances in the x and r directions, 
energy and chemical species) in cylindrical coordinates ( r ,  x) with rotational symmetry 
are 

p + pu, + po, + r-lpw = 0 ( 1 4  
pU+p,=O ( 1 a 
pi,  + p ,  =o (1.3) 

cpp-i--p=Qpw(z, T) ( 1.4) 

z = - W(2, T )  (1 .9 

with the equation of state given by p = RpT. Here, p is the density, p is the pressure, 
T is the temperature, U is the particle velocity in the x direction, o is the particle 
velocity in the r (radial) direction and Z is the mass fraction of the reactant A in a 
model, irreversible, exothermic chemical reaction A +  B. The overdot denotes the 
material derivative 

a a a  
- + U - + w - .  
J t  Jx J r  

The constant cp is the specific heat at constant pressure, Q is the heat of reaction, and 
R is the gas constant. The chemical reaction rate is W(Z,  T ) ,  and will be specified 
later. We do not include transport terms in (1.1)-(1.5) because we are ultimately 
interested in the propagation of shocks. 

Following Wood and Kirkwood (1954) (see Fickett and Davis (1979) for a review) 
we specialize (1.1)-(1.5) to the x-axis (or central stream tube) by taking the limit as 
r + 0. By symmetry, 

lim w ( t ,  r, x) = O  
,*O 

and it therefore follows that 
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The first of the equations in (1.6) follows from the definition of derivative. Thus, the 
goveming equations (1.1)-(1.5) are reduced to the four equations 

Dp/Dt+pu,  t 2p0, = 0 (1.7) 

p D u / D t + p , = O  (1.8) 

p c p D T / D t - D p / D f = Q p W ( Z ,  T )  

D Z / D t  = - W ( 2 ,  T )  
(1.9) 

(1.10) 

where DIDt = a, + ua, and p, U, p, T and Z are functions of t and x 
The function w,(t, x) represents the radial component of the divergence of the Bow 

field and is not known a priori. As noted above, the function w, contains the effects 
of the side boundaries, and the system (1.7)-(1.10) is not complete until o, is specified. 
Our approach will be to assume that o, is some function of the speed of a wavefront 
propagating in the medium; to leading order w, will be constant in the weakly nonlinear 
approximation. We refer to Fickett and Davis (1979, pp 199-204) for a thorough 
discussion of the role of the divergence term w, and how it couples to the boundaries 
of the vessel. 

The chemical reaction rate W(Z,  T )  is given by the Arrhenius law 

W =  k,Zexp(-E/RT) (1.11) 

where k,  is a constant, R is the gas constant, and E is the activation energy. With T. 
being a reference temperature and 8- EIRT,,, we can write 

W =  ik exp[8(1- T J T ) ]  (1.12) 

where E =  k ,  exp(-f?). We assume 0 >> 1 so that the chemical reaction will enter the 
equations in a significant way at leading order in the following analysis. 

2. Non-dimensionalization 

We assume a wave (any wave, not necessarily a shock) is propagating to the right into 
an undisturbed, quiescent medium with state 

P..P.. T., z,, U, = 0 C. =m. 
Here c. is the sound speed in the medium ahead and y is the ratio of specific heats 
and is related to R and cp by the well known formula y -  1 = y R / c p .  The location of 
a reference point on the wave is given by a smooth function 

x = s ( t )  

v( t) = s'(t)>O. 

and the speed of the wave is 

We let L be a typical length scale in the quiescent material ahead and d be a typical 
length within the wave. We further let f,= L/co be the acoustic time, i.e. the time 
equired for a sound wave to travel a distance L, and we denote by fsh the timescale 
for the chemical reaction. We also introduce the dimensionless parameters 
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The wnstant q is a heat release parameter, and k is the rate constant. We arsume E 

is small and that k is of order unity with respect to E. Thus, our assumptions are 
O<&<< 1 O< k=0(1 ) .  

We further assume 
e = E >> 1. 

The orders of magnitude of the heat release q and the ratio tch/ 1,. will be chosen later 
so that the flow is weakly nonlinear, i.e. to leading order the flow is represented by a 
linear homogenous system, and the non-homogenieties representing the chemical effects 
enter at the first correction level. 

We now define dimensionless time and position variables by 
x - s ( t )  e=- 

f ,  d '  
t 

7 = -  

The coordinate 6 measures the distance to the wave location on the scale of the wave. 
New dimensionless dependent variables p,  F, IZ, ,?? are then defined by equations of 
the form 

$(e, 7 )  = *S*(X, t )  
where 
C(T) is defined by 

is the appropriate quantity p a ,  pa, To, c. or 2,. The dimensionless wavespeed 

e(7) =c , 'u ( t )  

&(C) =w&,(cafi) 

and the radial divergence @ , ( U )  is scaled by 

where wref is the scale for w, and will be defined later when the equations are balanced 
to determine the weakly nonlinear form. The dimensioned quantities in equations 
(1.7)-(1.10) are now systematically replaced by the new dimensionless quantities. The 
chain rule gives 

a,=t,;la,-cd-'a, a ,=d-'a,  

and so 
D 
-= t;;a,+cd-'(a - s)a,. 
D t  

For conciseness of notation we introduce the operator 
H = E a , +  ( a  -6)a, .  

Then 

Thus, the goveming partial differential equations (1.7)-(1.10) take the form 
H ( p ) + ~ ~ + 2 € t , . w , ~ p ~ , ( C )  = 0 

pH( ti) + y -& = 0 

p H ( r ) - y - I H ( p ) = E q t . . t ~ h k p , ? ? e x p ( 8 [ 1 -  F - ' ] )  

H(z) = --Ekt,.t;h2 exp(B[l- ?I]). 

Y 
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These are the scaled mass, momentum, energy and chemical species equations, respec- 
tively. 

3. Asymptotic expansion and balancing 

We now assume forms for the state quantities which are power series in E :  

~ ( 5 , t ) = 1 + ~ p ~ ( 5 , ~ ) + ~ ~ ~ ~ ( 5 , ~ ) + 0 ( E ~ )  

~ ( 5 ,  T ) = 1 + E p 0 ( 5 ;  7)+E2p1(c, 4 + 0 ( E 3 )  

~ ( 5 ,  T )  = I+&T,(~, 7 ) + E 2 ~ l ( { ,  T ) + ~ ( E 3 )  

n ( 5 , T ) = & u o ( 5 , 7 ) + & 2 U 1 ( 5 ;  T ) + ~ ( E 3 )  

Z(&T)=Zo(& T ) + O ( E )  

e( T )  = Uo( 7 )  + & V I (  7 )  +o( E').  

Here we remark that although p, p and T are 0(1), the variations in these quantities 
are small. This assumption is at the core of the weakly nonlinear theory and leads to 
linear equations at leading order. Also, the particle velocity C is taken to be small 
compared to the sound speed. We are careful to expand t7 in a power series even 
though we are in a coordinate system that fixes the wave to all orders; velocities are 
measured with respect to the laboratory frame of reference rather than the frame 
attached to the wave. 

For notational convenience we now define the operator Go by 

Go= a,+ (u0-  v , ) J ,  

whereupon we have 

H(&=--Euo(+o'o~+ &+IC) + E~GO(+O) 

for + = p, T, U and p (but not Z, which must be treated separately). We first consider 
the species equation (2.4). When the expansions (3.1) are substituted we obtain 

- vozo, + O ( E )  = -skt,t;iZo exp( To) + o(e2t.,tz). 

In order to bring in the chemical term at O(1) we assume 

(3.2) f t - l -  -1  
BE ch - - E  >> 1. 

uoZo, = Eo exp(T0). (3.3) 

Then, to leading order 

With the assumption (3.2) the energy equation (2.3) becomes 
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In order to introduce the energy release term at O ( E ) ,  we are forced to assume 

& = 0 ( 1 ) .  

Then, to leading order, the energy equation will be a linear homogeneous equation 

2 q = O( 2) = qos 

Y - 1  
O(1): -uOTog + uo -PO< = 0 

Y 
(3.4) 

and at order O ( E )  we shall have 

y-1 y - 1  
O(E): - U ~ P ~ T ~ ~ - V O T I ~ +  G ~ T O ) + ~ O - P ~ ~ - -  G o ( ~ o ) = q ~ @ o e x p ( T ~ ) .  

Y Y 
(3.5) 

The momentum equation (2.2) gives 

O(1): - v o u o , + Y - ~ p o s = o  (3.6) 

O(E):  -uou,t+ Y-IPig + G o ( 4  - P O ~ O U O ~  =O. (3.7) 
The balancing of the terms in the continuity equation (2.1) will determine the order 

of occf. Substituting the expansions (3.1) into (2.1) gives 

c u o ~ p o I + E P , * ~ + E ~ G o ~ P o ~ + ~ l +  E P O ) ( E U O c + E 2 U I g )  

+2El.,O,Xl+ EP0)Czr(6)+O(E2Oref) +O(E2) =a. 
To bring in the radial divergence term at the correction stage, leaving a linear, 
homogeneous equation at leading order, we assume that 

Wxf= O( E ) .  

Then we have the following equations: 

O(1): - VOPOI + UOE = 0 (3.8) 

O(E): - UOPIC+ U,<+ ~ O ( P O ) + P O ~ O ~ +  msuo) = 0 (3.9) 
where we have taken o ~ ~ ~ = ~ ~ ~ ~ : E  and used Taylor's expansion for 6,(0); 

&(e) = &(UO)+ & U , 6 ) : ( V O )  + . . . . 
In summary, we have assumed that the flow is weakly nonlinear, i.e. the state 

variables do not deviate substantially from their reference values, but they do deviate 
enough so that the model differs from the linear acoustical model. To leading order, 
the mass, momentum, and energy equations (equations (3.8), (3.6) and (3.4)) form a 
linear, homogeneous, hyperbolic system 

(-io Y - - I  U0 "( ;::)=f) (3.10) 
0 y-l(y-1) -1 Tot 

where we have used the expanded equation of state 

PO + €Pi = PO+ To + E ( P ~  + Tz +PO To) + (3.1 1) 

to eliminate pa = pa - To. The order of the radial divergence U,, the order of the heat 
release q, and the order of the ratio of timescales f,,/fCh, were chosen so that the 
inhomogeneities (radial divergence, energy released by the chemical reaction, and 
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chemical reaction rate) come in at the correction level. The ratio t,Jt,, is O(E- ' )  so 
that the principal cause for the change in the chemical composition 2 in the wave is 
the chemical reaction. The assumption that the heat release parameter q is 0(s2)  limits 
the effect of the energy liberated by the chemical reaction; the parameter q may be 
written as q = Q/(Tacp/Za), and therefore the energy Q liberated by the reaction is 
much smaller than the thermal energy T,c,/Z. present in the Bow ahead of the wave. 
Since q is O(E*) ,  this dimensionless heat release is the same order as the mean kinetic 
energy (proportional to E') of the Bow. Finally, the assumption that o, is O ( E )  brings 
in the radial divergence at the correction level, not at leading order. Orderwise, U ,  is 
the same as the flow velocity U, which is small compared to the near Mach one 
wavespeed. 

4. The weakly nonlinear equations 

The system of leading order equations (3.10) has a non-trivial solution only if the 
coefficient matrix has non-zero determinant, i.e. when 

V O ( 7 )  = 1. (4.1) 

This condition therefore determines the leading order wavespeed. Equations (3.10) 
then become 

Por = TO( = yuo5. 
Y - 1  

(4.2) 

Integrating and applying the condition that the perturbations po ,  uo and To vanish 
ahead of the wave, we obtain the leading-order solution 

p o = y  To= yuo= ypo. (4.3) 
Y - 1  

With (4.1), the chemical species equation (3.3) becomes 

Zos = !Uo exp To. (4.4) 
To complete the model it is necessary to obtain an equation for To. Therefore we 
examine the O ( E )  correction equations given by (3.9), (3.7) and (3.5). Using (3.11) to 
eliminate p1 ( p l  = p l  - TI -poTo) and substituting the results (4.1) and (4.3) at leading 
order, these three O ( E )  equations become 

1 
Y- ' (Y -  Oplr - T,, =y-l TOToe+ %&exp(To). 

This non-homogeneous system has zero determinant and therefore there is a consistency 
condition, which can be found by adding the equations to obtain, after simplification, 

To, - V I  To( +- '-' ToTor+f(y- l)&(l) -i( y -  l)qo/rZo exp To=O. (4.5) 
Y + l  
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Thus, we have the equations (4.4) and (4.9, which is a system of two equations for 
To, 2, and q. 
We now perform a change of variables to eliminate U,. In ( 5 , ~ )  coordinates the 

wave is stationary, and so travelling wave solutions of (4.5) must have speed zero. 
Meanwhile, equation (4.5) includes an unknown coefficient U, in a convective term. 
We now replace 5 with a new spatial coordinate TJ defined by 

T = ~ + ~ ; V ~ Y ) ~ J J .  

Then (4.5) becomes 

where 

In the new (n, 7 )  coordinate system the wave is on the path TJ =ji q ( y )  dy, and the 
wavespeed is u,(T). Since U, is yet to be determined, we are free to search for solutions 
in the new coordinate system that travel at any speed, and the speed U, will become 
like an eigenvalue when boundary conditions are imposed. 

One final simplification will yield the weakly nonlinear equations. We define the 
constants 

1 (r-1Y p=-- 40. 
P = - 1 ( - )mr( l )  y-1 

2 y + l  2 y+l 

Then (4.6) and (4.4) become 

U,+ UU,+ a -pZo,  = 0 (4.7) 

zo,=kZoexP(y+l y - l u .  ) (4.8) 

Equations (4.7), (4.8) represent a system of quasilinear differential equations for 
the temperature perturbation U and the leading order chemical composition 2,. The 
radial divergence term enters as a constant (I in the Burgers-like equation (4.7). Thus, 
we have obtained a simplified model in an asymptotic limit of the full nonlinear 
equations of reactive flow restricted to the central stream tube. In this weakly nonlinear 
limit the wavespeed is of the same order as the sound speed (i.e. it is near Mach one), 
and the particle velocity and radial divergence are small in comparison. Yet, there 
remains an interaction between the fluid dynamics and chemistry through the coupled 
nonlinear system (4.7), (4.8). One should not conclude that the general physical system 
in the non-asymptotic limit behaves according to (4.7), (4.8); the asymptotic equations 
would be expected to hold only under the given assumptions. The major deficiency in 
(4.7), (4.8) is that there are no negative characteristics to carry signals backwards into 
the flow in the general case. However, in spite of this deficiency, Fickett (1985) has 
reported that model equations like (4.7), (4.8) do mirror some physical aspects of 
general reactive flows. 
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It is interesting to now compare the analogue equations for laterally divergent 
detonations posed in an ad hoc manner by Fickett (1985, p 169). His analogue equations 
are 

pr +PA + f q o L  = --(I (4.9) 

where t is time and x is a Lagrangian particle label. Here, A = 1 - Z (the mass fraction 
of the product species) and r is the chemical reaction rate; the dependent variable p 
is interpreted as a density-like quantity. The constant qo is the heat release parameter, 
and n > 0 is a 'radial divergence' term. Thus, there are some similarities between the 
Fickett analogue and the weakly nonlinear equations obtained rigorously in an 
asymptotic limit of the full fluid dynamical equations. One main difference is in the 
interpretation of the independent variables and the location of derivative with respect 
to those variables in the equations. The quantity p is indeed a density-like quantity 
(see (4.3)) since there is a linear relationship between the temperature To and density 
po in the asymptotic model. In (4.9), (4.10) an alternate interpretation might be that 
p is a 'density perturbation', and x is a coordinate moving with the wave. In any case, 
the weakly nonlinear analysis lends credence to the analogue equations (4.9), (4.10). 
However, in the sequel we shall observe that the analogue equations and the asymptotic 
equations give different conclusions regarding the diameter effect. 

5. Non-Arrhenius kinetics 

In much of the theoretical work on detonation theory (see Fickett and Davis 1979) 
the reaction rate is assumed to be of the form 

W ( Z )  = klZ" 

where n > 0 and k,  is a constant. This rate law corresponds to nth-order kinetics with 
zero activation energy (compare (1.1 1)).  In order to satisfy the cold boundary condition 
ahead of the wave (i.e. in order to have no reaction until the wave amves), we more 
specifically take 

W(Z, T ) = k , Z " + ( T - T , )  (5.1) 

where 4 is the Heaviside function which will turn on the reaction when the wave 
arrives ( + ( y ) = O f o r y ~ O a n d  + ( y ) = l  fory>O). 

The weakly nonlinear analysis can be carried out in a similar manner as before 
with only minor changes; so we only outline the calculation. The same scalings as in 
section 2 apply except for those involving 9. The scaled mass and momentum equations 
(2.1) and (2.2) are unchanged, but the energy equation (2.3) and species equation (2.4) 
are changed to 

a2 JZ 
aT JE 

&-+(a-<)-= -Efa,klZ:-"Zn+(T,(T- 1 ) ) .  

(5.2) 

(5.3) 
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In the Arrhenius case the activation energy 8 determined the value of the small 
parameter E and hence defined the length scale d of the wave. In the present case we 
take 

k t  = -1  
1 as-& 

which defines the length scale and brings in the chemistry at leading order. Again with 
the assumption that q=qoE2, so that the leading-order energy equation will be 
homogeneous, and with the ansatz (3J), equation (5.3) gives to leading order 

uozo, = z:-'z:+( TOTO&). 
The energy equation (5.2) gives to O( 1) and O(E), respectively, 

The leading-order equations for mass, momentum, and energy are the same as (3.10) 
and so (4.1)-(4.3) follow. Substituting these results into the equations at the correction 
level Enally yields, with a similar calculation as before, the asymptotic equations 

U,+ UU, + a -pZo,  = O  (5.4) 

zo, = z w  U) ( 5 . 5 )  

where a, p and U are the same as before, and where we have set Z, = 1 as the scale 
for Z, and we have noted that 

6. Solution of the asymptotic equations 

In this section we formulate and solve a boundary value problem (BVP) associated 
with the model equations (5.4), (5.5) in the zero activation energy case. We ask if the 
equations admit ZND (Zel'dovich-von Neumam-Doering) type waves (see Fickett 
and Davis 1979) where a constant velocity shock is propagating into an unperturbed 
reactive medium; in the shock it is assumed that no chemical reaction occurs, and the 
chemical energy is released behind the shock in a reaction zone between the shock 
and a piston that is supporting the Bow from the rear. If the medium ahead of the 
shock is quiescent ( U  = 0, Z = I ) ,  then it follows immediately from the conservation 
laws (5.4), (5.5) that the jump conditions (Rankine-Hugoniot conditions) across the 
shock are given by U, = 20 ,  Z, = 1 where D is the velocity of the shock and U, and 
Z, are the values of U and Z just behind the shock (see, for example, Whitham 1974). 
The rear boundary condition (at the unknown piston location) is taken to be U = 0. 
The motivation for this condition is that the products of the detonation will expand 
into an essentially infinite volume and thus retum to an ambient state given by 
po= y T o / ( y -  1) = 0 (see (4.3)). We examine the case n = 1; other cases can be handled 
similarly. 
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Therefore, we consider the following BVP: determine a constant D > 0 and functions 
U = U ( q ,  r) ,  Zo = Zo(v, r )  satisfying: 

U*+ uuv f a  -pzo, = o  (6.1) 

zo, =z, reRI  Or -,yo< q < 177 (6.2) 

with 

u=o zo= 1 for q > 0 1  (6.3) 

U = 2 D  zo=l o n q = D t  (6.4) 

u=o o n q = D r - x O  (6.5) 

for some -co~xo<O. The problem is shown schematically in the spacetime diagram 
in figure 1. Note that the constant state U = 0, Zo= 1 in the flow ahead is a solution 
to the PDES (&I) ,  (6.2) since a -0 (because w,=O) ahead of the shock. 

We therefore look for solutions of (6.1), (6.2) of the form 

U(?, 7) = u(x) ZO(% .) = z ( x )  (6.6) 

where x = q - Dr. Using the lowercase U should cause no confusion with the same 
notation used in section 1. Substituting (6.6) into (6.1) and (6.5) gives the BVP 

(U - D)u'+ 01 -Pz'= 0 (6.7) 

z ' = z  -xo<x<o (6.8) 

with 

u(0) = 2 D  z(0)  = 1 (6.9) 

u(-xo) = 0 (6.10) 

for D and for some ,yo > 0 still to be determined. Equations (624, (6.9) give z = exp x, 
and then (6.7) can be solved for U. Thus, upon taking the plus sign on the radical 
when solving for U to meet the boundary condition, 

(6.11) 

where we have evaluated the constant of integration using the shock condition u(0) = 
20. The shock velocity D, which is like an eigenvalue for this problem, is yet to be 
determined, and at the present it is unclear how the rear boundary condition can be 
satisfied since, in (6.11), U 

z=expX u = D +JD2 -2ax + 2P(eX - 1) 

D. 

Figure 1. Spacetime diagram illustrating the domain 
of the boundary value problem (6.1)-(6.5). 
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To analyse the problem we write (6.7), (6.8) as a system of autonomous equations 

p z - n  
U - D  

z’=z (6.12) 

which has a singular line at U = D; the phase diagram is shown in figure 2 with the 
ratio a /p<l .  It is clear from (6.12) that if there is a path connecting the shock and 
the piston (on the U = 0 axis), then that path must pass through the singular line at 
the point C: (ap-’ ,  D), which is a saddlepoint for the desingularized system 

i = z(u - D) u=pz-a  (6.13) 

where the overdot is the derivative with respect to some other parameter along the 
integral curves. The phase plane for (6.13) is shown in figure 3. So the problem reduces 
to determining if a value of D exists for which a separatrix (the one dimensional 
unstable manifold W.) from C connects to the shock point S (see figure 3). 

The condition that the solution (6.11) pass through C is 

d D Z - 2 a  ln(;)+2p($-I) = O  

or 

D =a (a In(np-’”n+p)’” .a-’. 1 (6.14) 

which determines the eigenvalue, or shockvelocity, D. We remark that 01 In(ap-’) - a + 
p 2 0  for all a, p > 0, so (6.12) is well defined. However, if ap-’ 3 1 then the critical 
point C lies to the right of S and there is no trajectory with z S  1 that connects S to 
the axis u=O,  z s l .  

Figure 2 Direction field and trajectories for 
(6.12). 

s h o d  (1,ZDj 

Figure 3. Phase diagram for the desingularized 
system (6.13). 

z 
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Thus, the solution (6.11) is valid for DG U 6 2 0 ,  with ln(ap)-'=ZxSO. To deter- 

r = e x p x  U = D -JDz-2crx +2p(ey - 1) (6.15) 

where, when solving for U we take the minus sign on the radical. From (6.15) we 
observe that U = O  when x = -,yo, where -,yo is the negative root of the equation 

(6.16) 

mine the solution in the range O S  U < D we integrate (6.7), (6.8) to get 

ap-',y + 1 = exp x. 
We may now put together the preceding results in the following theorem. 

Theorem. If up-' < 1, then there exists a unique value of D given by (6.14) for which 
the BVP (6.1)-(6.5) has a solution. A solution i s  given by 

Zd?, 7) = exp(x) -x0<x 5 0 
D +JD2 - 2crx + 2p(exp ,y - 1) 

D-JD2-2ax+2p(expx - 1) - x o ~ x  < I d a l p )  
I n ( a / p ) s x  1 0  U(?, 7 )  = [ 

where x= ?--Or and -,yo is the negative root of (6.16). 

A graph of U ( x )  is shown in figure 4 in the case u = 1 and p = 2. In this case 
D = 0.783 394 and ,yo = -1.593 62. Thus the reaction turns off at the cold piston when 
Z = exp(-1.593 62) = 0.2032, i.e. before all the reactant is depleted. 

I "  

We make a few observations. For a fixed p (heat release), the shock velocity 
D =  D(u)  is a decreasing function of the radial divergence a, with D ( O ) = m  and 
D ( p )  = 0. For a 7 p there is no steady wave. This conclusion is physically plausible 
in that the heat release p supplies energy to the flow to sustain the wave; the radial 
divergence, on the other hand, dissipates energy through the coupling of the divergence 
to the lateral boundary conditions at the side of the tube. The narrower the tube, for 
example, the stronger the coupling, possibly through rarefactions propagated into the 
flow from the boundary. Thus, if a p then the dissipation overcomes the energy 
released by the chemistry and a steady wave is impossible. 

Although we do not present the details of the calculation, we remark that the Fickett 
analogue equations (4.9), (4.10) predict, for the simple rate law considered above 
(I = k( 1 - A )  = U),  that a steady wave can be propagated for any value of the divergence 
a. The reason for this difference is the t-derivative in (4.10), which introduces the 
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shock velocity D into the species equation. Thus, the asymptotic equations appear to 
reflect observed physical phenomena better than the analogue equations in the simple 
case. 

7. Arrhenius rate law 

We now present some numerical results showing the existence of an eigenvalue 
detonation, in this case the governing equations are given by (4.71, (4.8), with the 
Arrhenius rate law. The same boundary conditions (6.3)-(6.5) are imposed, as before. 
From (4.7), (4.8) we note that the travelling waveforms U =  u ( q  - DT),  Z, = z ( q  - DT) 
satisfy the system 

f=kze'" (7.1) 

U'= (pkz  e'" -.)(U -D)-'  (7.2) 

where the derivative is with respect to ,y = q - DT, and where we have fixed y = 3. The 
value of y = 3 is chosen for computational convenience; however, this value of y (and 
even higher values of y )  is typical for the gaseous detonation products of solid 
explosives (see Fickett and Davis 1979). As in the non-Arrhqnius case we observe that 
there is a singular line at U = 0, and thus any trajectory connecting the shock S :  ( z  = 1, 
U = 2 D )  to the cold piston (a point on U =0)  must pass through the singular line at 
the critical point C: ( z = ( a / p k )  exp(-2D), u = D )  of the desingularized system 

i = kz( U - D )  e2" 

ti = pkz e" - a. 
(7.3) 

(7.4) 

A necessary condition for such a trajectory to exist is that the critical point C must lie 
to the left of the shock point S, or 

(7.5) 

The linearized matrix (Jacobian) corresponding to (7.3), (7.4) at the critical point C is 

Clearly, det J < 0 and trace J > 0, and therefore C is a saddlepoint for all values > 0, 
p > 0, k > 0 of the parameters. Figure 5 shows a generic phase diagram. Contrary to 
the non-Arrhenius case discussed in section 6, it is not possible to analytically determine 

* shod11 ,20 ]  

Figure 5. Phase diagram for the system (7.31, 
(7.4). 
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a condition on D that will ensure that the unstable manifold W. (see figure 5) emanating 
from C will pass through the shock point S. 

Therefore we resort to an argument based upon numerical calculations. Rather 
than perform an exhaustive parameter study (involving the four parameters rC, a, p 
and D ) ,  we confine the analysis to the special case k = p = 1, (Y = 2; it is shown that 
there is a value of the shock velocity D such that W, connects C to S. With all the 
other parameters fixed, the phase diagram is deformed continuously as a function of 
D. Figure 6 depicts the core of the argument. For D = 1.15 the unstable manifold W. 
passes above the point S representing the shock; for D = 1.20, W. passes below S. 
Because the vector field defined by (7.3), (7.4) is continuous, it follows by a standard 
argument (based upon the intermediate value theorem) that there exists a value of D 
with 1.15 <Do< 1.20 such that the separatrix W, intersects the point S .  Numerically, 
using Phaseplane (Ermentrout (1990), a numerical ordinary differential equation 
solver), Do was computed to be Do=1.17. 

Figure 7 shows the phase plane in the case D = 1.17. In this case there is'a trajectory 
connecting the a point P on the axis U = 0, where the piston is located, to the point S 2.31g 2.41F 

1.20 1.15 

0.20 1.0 2 0.18 1.0 2 ' 

Case D=1.15 case n=i.zo 
Figure 6. Phase diagrams for the system (7.3), (7.4) when n=2.  k = P  = 1. For D =  1.15 
the unstable manifold W. is above S; for D =  1.20 it is below S. 

Figure 7. Actual computed phase diagram for (7.3), 
(7 .4) inthscasea=2,  k = p = i  a n d D = i . 1 7 .  
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representing the shock (note that in the singular system (7.1), (7.2) the direction along 
the trajectory from P to C is opposite that shown in figure 7). This trajectory then 
represents a solution: a shock of strength U = 2 0  and speed D = 1.17 followed by a 
reaction zone where U decays back to a cold piston U = 0 and where the reaction ceases 
without going to completion. 

The problem studied in this section addresses the case where the reaction rate is 
temperature dependent, a problem posed by Fickett (1985, p 175). Although we have 
only examined one special case, it is noted that the Arrhenius factor forces changes 
in the conclusions; no longer is it required that the heat release p exceed the radial 
divergence LY in order to have a steady wave, as in section 6. A complete parameter 
study would be required to determine if a steady wave exists in all cases where (7.5) 
is satisfied. 
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